Acoustic Applications for Thermography

DOE/NIH Workshop on Thermographic Approaches to Medical Diagnosis and Therapy

Morris S. Good, Eric J. Ackerman, Leonard J. Bond, Kevin R. Minard, Paul D. Panetta, and Harold E. Trease

December 2001

Microscopy Technologies

Acoustic

Magnetic Resonance

Optical Con-focal

Penetration

Acquisition

Contrast

Excellent

Fast

Excellent

Excellent

Slow

Excellent

Poor

Fast

Good

Sensitivity

Information

Good

Elasticity, density, &

viscosity

Spatial Resolution Scalable (~1-80 um)

Poor

Chemical & physical

Scalable (~10 um)

Good

Selective dye absorption

Excellent (1 um)

Acoustic microscopy can be exploited for biological applications.

Perspectives

- Promising Acoustic Biomedical Applications
 - Thermography, Hyperthermia, Lithotripsy, Sub-cellular Imaging, etc.
- Advancements in enabling technologies
 - Electronics
 - Transducers & Phased Arrays
 - Computational

Acoustic microscopy is usable in real time to attack biological problems in cells and tissues.

Heat Changes the Acoustic Properties of Cells

In Vitro

Liver
Breast muscle
Breast parenchyma
Kidney

Water

Breast fat with parenchyma

Acquired from M.T. Nguyen and U. Faust, *Ultrasonic International*, 1992 Vol. 30, No. 2, p. 128.

U.S. Department of Energy Pacific Northwest National Laboratory

Acoustic Microscopy of *Xenopus* Oocytes

Xenopus Oocytes: Before and After Heat Stress

Before: Cells at 20° C

After: Cells at 40° C

Acoustics can simultaneously damage and image

Model 3-D tissue systems

- tissue damage
- tumor damage
- inhomogeneous media

Low Intensity
High Frequency

Image:

Damage:

High Intensity

Low Frequency

Problems: Distortion of acoustic fields in inhomogeneous media

- Limits resolution
- Increases damage region
- Distorts and steers beams

Solutions:

- Phased arrays (adaptive/dynamic focusing)
- Modeling to account for effects

Inhomogeneous (Ti-17)

Homogeneous

Focused
Transducer
(9 MHz)

3.1 cm x 3.1 cm U.S. Department of Energy Pacific Northwest National Laboratory

Multi-Technology Microscopes for Thermography

Multiple modes of imaging and data collection in cells and tissues can provide insights unavailable by other single approaches.

Contact Information

Morris S. Good

Address: Mail Stop K5-26, PNNL, P. O. Box 999, Richland, WA 99352

Phone: 509-375-2529
 e-mail: <u>ms.good@pnl.gov</u>

Eric J. Ackerman

Address: Mail Stop P7-56, PNNL, P. O. Box 999, Richland, WA 99352

Phone: 509-373-3595
 e-mail: <u>eric.ackerman@pnl.gov</u>

Leonard J. Bond

Address: Mail Stop K5-26, PNNL, P. O. Box 999, Richland, WA 99352

Phone: 509-375-4486e-mail: <u>Leonard.Bond@pnl.gov</u>

Kevin R. Minard

Address: Mail Stop K8-98, PNNL, P. O. Box 999, Richland, WA 99352

Phone: 509-373-9847e-mail: <u>kevin.minard@pnl.gov</u>

Paul D. Panetta

Address: Mail Stop K5-26, PNNL, P. O. Box 999, Richland, WA 99352

Phone: 509-372-6107e-mail: Paul.Panetta@pnl.gov

Harold E. Trease

Address: Mail Stop K1-85, PNNL, P. O. Box 999, Richland, WA 99352

• Phone: 509-375-2602 • e-mail: het@pnl.gov Pacific Northwest National Laboratory